Available online at www.sciencedirect.com
JOURNAL OF

ScienceDirect COMPUTATIONAL
PHYSICS

i

e vnelies
ELSEVIER Journal of Computational Physics 227 (2008) 2387-2410

www.elsevier.com/locate/jcp

A generalized discontinuous Galerkin (GDG) method
for Schrodinger equations with nonsmooth solutions

Kai Fan, Wei1 Cai *, Xia Ji

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States

Received 21 February 2007; received in revised form 4 September 2007; accepted 22 October 2007
Available online 7 November 2007

Abstract

In this paper, we propose a new generalized discontinuous Galerkin (GDG) method for Schrédinger equations with
nonsmooth solutions. The numerical method is based on a reformulation of Schrédinger equations, using split distribu-
tional variables and their related integration by parts formulae to account for solution jumps across material interfaces.
The proposed GDG method can handle time dependent and nonlinear jump conditions [¢] = f(¢~, ¢"). Numerical results
for 1D and 2D time dependent Schrédinger equations validate the high order accuracy and the flexibility of the method for
various types of interface conditions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In paraxial approximations for wave propagations [1,2] in optical waveguides, the time harmonic Max-
well’s equations are approximated by Schrodinger equations where the propagation direction is identified
as the time axis. Due to the mismatch of refractive indices in waveguides, the electromagnetic fields are dis-
continuous solutions to Schrodinger equations, a property not shared by the probability wave functions of
quantum mechanics. In order to handle the discontinuities, we propose in this paper to reformulate the Schro-
dinger equations using distribution variables where Dirac J-functions are introduced as source terms to
account for the discontinuities in the solution and its derivatives. Discontinuous Galerkin projections of
the distribution variables are then used to obtain numerical discretizations, thus the name “‘generalized discon-
tinuous Galerkin (GDG) method™.

The generalized discontinuous Galerkin (GDG) method extends the conventional discontinuous Galerkin
methods to Schrodinger equations with general jump conditions at interfaces. Discontinuous Galerkin
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methods have been used to handle solutions with jumps, such as the shock waves for nonlinear hyperbolic
systems. To account for those jumps, numerical fluxes are defined using local Riemann solvers for the hyper-
bolic systems [3-5]. Lately, the discontinuous Galerkin method has also been applied to elliptic problems [6—8]
where the numerical fluxes enforce continuities of the solutions similar to the interior penalty methods pro-
posed by Baker et al. [9-11]. In this paper the GDG method enforces the jump conditions at interfaces using
Dirac J-functions as source terms in the partial differential equations. Those J-functions act as penalty terms
in the “collocation” sense. Penalty terms using Lagrange multiplier have been used in the enforcement of
boundary conditions [12] and the coupling of domain decomposition spectral element method [13]. The advan-
tage of using the o-functions are three folds: (1) It can handle jump relationships of a general form
[p] = f(@o~,90T),[¢] = ¢+ — ¢~ where f(¢~, ¢") can be nonlinear and time dependent functions. (2) The dis-
continuous Galerkin projection of the J-functions is natural due to the weak form definition of the distribution
variables. In fact, we will define Galerkin projection of an evenly split Dirac J(x) function in the sense of
fia v(x)d(x)dx = F10(0), for @ >0 and its related integration by parts formula. (3) The GDG approach
can be easily extended to multi-dimensional problems and other types of PDEs of higher orders with non-
smooth solutions.

The remaining part of the paper is organized as follows. In Section 2, we will give a model problem of opti-
cal wave propagation in layered media using paraxial approximations and the jump conditions for the result-
ing 1D Schrodinger equation. Section 3 will reformulate the 1D Schrodinger equation using distributional
variables and also propose the generalized discontinuous Galerkin(GDG) method. Then, in Section 4, we
extend the GDG method to 2D cases. Section 5 contains numerical results validating the high accuracy
and convergence of the proposed GDG method and the flexibility of handling nonlinear time dependent jump
conditions. Finally, Section 6 gives the conclusion of the paper.

2. Schrodinger equations with nonsmooth solutions: paraxial approximation of wave propagations

To motivate the work of the generalized discontinuous Galerkin (GDG) method, we present a model prob-
lem on the paraxial approximation of wave propagations in a 3-layer media with dissimilar dielectric
constants.

Assuming no charge nor current source and time harmonic field (with frequency ), we have the following
time harmonic Maxwell equations

— . —
VxFE = —louH,

— R
VxH = lwekE, ()
V-(E) = 0,
V. (uH) = O.

Combining the first two equations and solving for f, we get the vector wave equation

VxVxE= wze,uf, (2)
which will lead to

V’E + 0*eyE =V(V-E). (3)
Let us consider the case E is independent of y, namely

E = E(x,2), (4)
and also € is a piecewise constant, say

€ 1n Q :{a<x<‘c1},
e=< 6 in={1 <x<1} (5
€3 In 93:{12<x< b}
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Then, we can decouple £, from £, and E. in (3), and get the following scaler Helmholtz equation for E,
component

V’E, + o’euE, =0, in Q= [a,b]\ {11,102}, (6)
with continuity at interface given as, for k = 1,2,
EJ’(levz) = Ey(‘cljaz)v (7)
OF, (5,7) _ OB, (7). .
Ox Ox

Now assume
E,(x,z) = @(x,2)e " in Q, I=1,2,3, 9)

where ¢ is an envelope function which varies slowly along the propagation direction z. By applying the slowly
varying envelope approximation (paraxial approximation), i.e.

R 3¢

o2 | < e (10)
we can ignore the second order derivative in z and get the following scalar beam propagation equation

o 0 82(/) .

IZﬁIE:@—i—(wze[,u—ﬁf)(p, in Q. (11)
Choosing

ﬁ] = W+\/€IU, (12)
we have

. 0p o0 .

12ﬁ1§:@, m Q[, 121,2,3, (13)
with jump condition, for £ = 1,2,

e (1, 2) = e Pifo(c], 2), (14)

L. 00(t,2) i 00(t),2)

iz ko _ iBry1z ko ) 15

¢ Ox © Ox (15)
3. 1D GDG method
3.1. Distributional formulation of the Schrodinger equation with nonsmooth solutions

Replacing z by ¢ in (13), we have the 1D Schrodinger equation with zero potential

. p(x,t) _ Dp(x,1)

e =5 for x € [a,b] \ {71, 12}, (16)
where ¢ is a complex-valued wave function, and ¢ is given as

c=2B, =2\ e, inQ [=1723. (17)
With the shorthand notation

[u(te, )] = u(t, ) —u(zy 1), (18)

we can write the jump conditions at 7;, k = 1,2 as

[o(z, )] = fi(0), (19)
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aq)(‘ck,t)
RS AYA 2
2ot — g (20)
which, from (14) and (15), are given by
_ 1 iwt - 1 iwf 4
o) =5 (& = Dot +5 (1550, (1)
1 (k=) 0o ‘L'f,l‘) 1 ki) 0 Tt

Next we incorporate the jump conditions into (16) using 6 and &' source terms at 7,, 75, namely,

ie SOt T e (030 — 1) ~ £2(00(x — ) ~ (005~ 7)) — /()5 (5 72). for x € [a.b]
23)

The key idea here is the use of the é and &' source terms to compensate the singularity introduced by the jump
conditions at interfaces. This approach of using 6 functions to account for the jump conditions provides an
alternative way to traditional interior penalty method [12,13], which uses Lagrange multipliers to enforce
the continuities of solutions.

Remark 1. In the derivations above, we have selected different constant f; for Q; in (12) for generality of jump
conditions. In practice a single propagation constant f (obtained by solving the eigenmodes for the
waveguide) is usually selected for the beam propagation method of wave propagation. For 3D problems, the
electrical field will be discontinuous across interfaces of materials of dissimilar dielectric constants, the jumps
in (21) and (22) will be nonzero in general.

3.2. 1D generalized discontinuous Galerkin (GDG) method

To avoid dealing with &' in (23), we introduce an auxiliary distributional variable p to rewrite (23) as

. 0p Op
el =L g (03— 1) — (000 — ), (24a)
0p
P:a—fl(t)&?c—fl) — ()é(x — 12). (24b)
Now, both ¢, p are piecewise continuous functions over [a, b], while ‘;—‘f,% are treated as distributions.

To derive finite element approximation of (24a) and (24b), we first divide Q = [a,b] into N segments as
{la=xg< - <xpy =71 <+ <xpy, =70 < -+ <xy = b}, (25)

and denote element

K:[xk,xk+1], fork:O,...,N—l. (26)
To proceed, we will need the following evenly split d-function
0
/ v(x)d(x)dx = :F%U(O), for a > 0, v(x) € C(+£aq,0], (27)
+a
and integration by parts identities for distributional variables %—f %’ over closed interval,
T+h ® T+h v
| e = (e me(e b~ (ol - [ Sotods (28)
. Ox . Ox
+h ap +h v
| ety =ple e mote+h) = {phoe) ~ [ g plalar (29)

where {u} =1 (u(t") +u(z")) denotes the average of the values of function u at the interface t = 7;. The
proofs of (27)—(29) are given in Appendix 1.
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Let P/(K) be the space of polynomials in K of degree at most J, and v € L'[a, b] be a test function, where

vl € P/(K) for K=0,...,N —1. Let us consider the first segment on the right of the interface, say
K = x4, %k, +1], Xx, = 71. By multiplying (24a) by v and integrating by part over K, we get

. 1) do
1c/Kavdx—pv|x;l —{p}(t)v(xy)) Kpadx—gl(t)/Ké(x—rl)udx
dv

=il = () + 5 0et) - [ P (30)

where the factor 1 in front of g, (¢ ) comes from (27). Eq. (30) suggests that we should define the fluxes at the
right hand side of the interface x;, = 7| as

() = {0} () + 221(0), an
and at x; | as
ho (% 11) = Pl 1) (32)

Repeating the above for K = [x;,_1,x;,], X, = 71, one gets the fluxes at the left hand side of the interface
X =1, as

l
ho(xe) = {p}ook) — 5£1(0), (33)
and at x;,_; as
h(/,(x,jlfl) :p(x,flfl). (34)
As the solution is continuous at x,+;, we can replace (32) and (34) by
ho (1) = {p} (x1)- (35)
Similarly, we can define the fluxes for p as
1
hy(77) = {@}(11) £3./1(1), (36)
hy (3 11) = {0} (o). (37)
In general, for K = [x;,x;,1], we will have the following Galerkin discretization for (24a) and (24b)
Gl7) do
e [ pods = byl o) — hololt) — [ PG (38)
K K
_ _ dv
[ s = o eloi) — o ote) = [ 0 (39)
K K
where if x; # 11,15,
ho(xi) = {p} (), (40)
hy(x) = {0} (), (41)
and at t = 1,k = 1,2
ho(t%) = {p}(7) £ 2gk() (42)
() = {0} () £ 3£, #3)

Remark 2. In (42) and (43), if we substitute f;(¢) = [¢](tx), g (¢) = [a“’gf 9 = [p](z4), the fluxes take a similar
form of the LDG flux in [6,7] with % weighting factor for the jumps of the solution. However, it should be
noted that the generalized Galerkin approach provides the mathematical justification for the use of {¢}, [¢] or
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{p}, [p] even when the solution and its derivatives are discontinuous at the interface. In Section 3.3, we will
show the consistence of the numerical scheme using (42) and (43) at the material interface.

Remark 3. Away from the jump interface t;, other forms of numerical fluxes [6] including IP and LDG can be
used in (40) and (41) to address the possible spurious modes of high order discontinuous Galerkin methods.

Let ¢;(x),j =0,1,...,J be the basis functions, and we expand ¢ and p as

p(x,1) = ZJO: @, (0)p;(x),  plx,1) = zjojpj(t)fk,-(x)y (44)
= =
and in each K, by choosing the test function v = ¢,(x) for / =0,...,J, and denoting m,; and mj; as
y= [ bidas = [ Pgan (43)
we have
ICZ mu dt ho (i) b1 (1) — P (xi) b (x) — ZW,PW (46a)
Zmljp] = Iy (k1) (Xiy) — Bp () 1 () Z myQ;. (46b)

Let us define the mass matrix M and the stiff matrix M~

M= (my;), M*=(m) (47)

ij
and the following vectors
N
¢ = [0 (PJ]T7 7 =p 'PJ]T7 ¢ =[dy-- ¢J]T,
we get the following system of ODEs

—

iCdd_qf =M [hqo(xk+l)$(x1;+l) - hw(xlj)$(xlj) - MX?L (483)
7= M hy(xe,) 6 ) — b)) 6 () — M), (48b)

which can also be written for the primary variable @ after eliminating 7" as

do
dr

Remark 4. (Stability of GDG) The stability of the GDG discretization of the Schrédinger Eq. (16) is related to
the eigenvalue distribution of the derivative matrix S, which should have a strictly negative real part. This is
confirmed by numerical calculations of the eigenvalues for matrix S with homogeneous end boundary
conditions. Figs. 1 and 2 show the eigenvalues in the complex plane with negative real parts and very small
imaginary parts for the cases of second order basis J = 2 and N = 8, 32, respectively. Further theoretical study
of the stability of the GDG is needed.

=S9. (49)

3.3. Consistence of zeroth order 1D GDG method

In this subsection, we will demonstrate the consistence of the proposed GDG method (48a) and (48b) by
deriving the truncation error of the 1D zeroth order case. The convergence of higher order GDG method will
be verified with numerical tests in Section 5.
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Fig. 1. Eigenvalues (scaled by 1/N?) of the matrix S in (49) for J =2, N=38.
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Fig. 2. Eigenvalues (scaled by 1/N?) of the matrix S in (49) for J =2, N = 32,

First, we will find the equivalent finite difference formula by identifying the numerical solution as the
approximation to the exact solution at the middle point x; ! of the interval [x;,x;;1]. And for simplicity, the
location of the interface (jump) is set to be the origin. Let ¢(x, ¢) be the exact solution to the Schrodinger equa-
tion and the interface jump condition at x = 0 plus additional boundary conditions at the exterior boundaries
(not shown in Fig. 3), then (24a) and (24b) becomes

2 =P e()s(e), (50a)
=2 0o, (50b)
B[] = 9(07,1) — (07, 1) — f(1) =0, (50c)
Bz[(P] = a(p(gx at) _ aq’(gx 7t) _ g(t) =0. (SOd)

As shown in Fig. 3, over the four intervals around x = 0 we identify ¢_,, ¢, , ¢, ¢, as the approximations to

o(—=3), (=8, 0(%), (%), respectively; p_y, py, p;, p; as the approximations to ¢'(—32), ¢'(=14), ¢'(4), ¢’ (%),
respectively.



2394 K. Fan et al. | Journal of Computational Physics 227 (2008) 2387-2410
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Fig. 3. 1D mesh near x =0.

Meanwhile, 4, and h, are the numerical flux of ¢ and p, at x = —h,0", i given by (40)—(43), i..

1 1
ho(—h) = Epfl +§P0a hw(oi)

1 1
p(j):a h<P(h) :Ep(;r—i_zpla

1 1 .

_ 1 1
hp(fh):§¢71+§¢0, hp(Oi):%, hp(h)ZEQD(TJFE(PL

The semi-discretized system (continuous in time) to (50a)—(50d) is given as

. 005 L, 0*

1c o Lo, pilly- = :Fz(hw(o ) = ho(£h)),
1

b = H 0% )

Bilo] = (g —¢,) — f(t) =0,
Bilo] = (py —py) —g(t) = 0.

Using (51) and (52) to express p;, py in terms of ¢ as

1 1

pé = $Z(hp(0i) - hp(ih)) = $ﬂ((p§ - (pil)’
we get

.0y 1, 1

1ca—t0 = W(% Q) — P

. 0py 1 1

—_ _ _ +
1c ot —thl 4h2(§01 %)~

Now, define the truncation errors for the interface conditions at x = 0 as

Tu(0)= (0(3.0) o ~31) ) -0
- (36 -2(4) o

and truncation errors at x = 0% for the semi-discretized finite difference scheme (53) and (54) as

L e 1 h 3h 1 3h
To- [, p] _ICE_L:[(/)J)HO’ =g~ <¢<—§,t> — ¢<—7,t>> +ﬂp<—77t>,
) 0 1 (3h 1 3k h
Ty [, p] —lca—ﬁ[(p,p]lw =le, —2hp<2 ,t) +4h2(fp<2 ,t> - fp(z,t>)~

By Taylor expansions at x = 0,k = 1,3,
kh k K
10 (j: 7) = (0%) + th)/(Oi) + §h2¢/’(0i) +o(h*),

p(i %) =¢'(0%) £ ghq)”(oi) +O(n),
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and, using the Schrodinger equation ic a“’ = %r‘f at x = 0%, one can get

T (@) = O(h), Ts(p)=0(h), Ty:[p,pl=O(h).

4. 2D GDG method

In this section, we will extend the GDG method to 2D time dependent Schrodinger equations with non-
smooth solutions. Let the solution domain Q be decomposed into regions €, with jumps across their interfaces,
Le. Q =U;Q;.

We consider the following time dependent scalar 2D Schrédinger equation, for (x,y) & I' = U,0Q;

, ago e o
6t @‘Fg‘f—S( ®), (57)
where c is a constant in each ©; and S is a source term. The jumps at (x*,)*) € I', are given as
fO 0 = [@(x*,y* t)] =y — oLy, (58)
0 do(x*T,y* 1) dp(x*,y .t
"y 1) = ey O] _ Qe y ) e,y 0) (59)
6}1 on on

where n is the normal of the interface I'.
On the interface I', a local coordinate (£, #) will be introduced where ¢ is along the normal direction and # is
along the tangential direction(s). Following the same procedure as for (24a,24b), we can rewrite (57) as

. aqo dp Oq 2

e 6x+6y o(E—&Velg+5, (60a)
p=2 se-eye (60b)
qza—é(é—é*)fa—y- (60c)

The justification for the d-function terms are given in (A.25)—(A.27) of Appendix 2, which are used to com-
pensate the singularities from the differentiations of the solutions across the interface I'.

As in 1D case, to derive a Galerkin projection for (60a)—(60c), we will use the property of split distributions
in the 2D case given in (A.15) and their integration by parts formula (A.16) and (A.17). Then, for each element
K in the discretization of Q, let P/(K) denote the space of polynomials in K of degree at most J, and v € L'(Q)
the test function, where v|,, € P/(K). Multiplying Egs. (60a)—(60c) by v and integrating by parts in K, we can get

ic/ qu):/ h’;vnxds—/p@ dxdy+/ h(ypvnyds—/q@dxdy+/Svdxdy7 (61a)
x Ot oK a oK k Oy K

/pvdxdy:/ hyon,ds — /(pa dxdy, (61b)
K

/quxdy:/ hgvn,ds — /q) dxdy, (61c)

where (n,, n,) is the external normal of 0K and (hfp, h.,, h, = h,) are numerical fluxes, which relate to (p, g, ¢) at
0K, are given as, for X = (x,y) € 0K,
hy(x%) ={py £a', K(x*)={q} £, h(x*)={p}xb, (62)
where + indicates the exterior side of the 0K and a*,¢”, b from jump conditions are defined as
1g|Vé|n,,1g|VE|n,,1f), if TNK
(@ b) = { (38IVeln.3gIVeEn,,5f) i #0 (63)
(0,0,0), ifrnK=0

As in (40)—(43) for 1D case, simple averages are used in (62) for all element boundaries except the material
interface, where averages plus/minus half of the jump are used.
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Let ¢j(x, ), j=0,1,...,n; be the basis functions, where n; + 1 is the number of basis functions required
for Jth order approximation, and we expand ¢, p, g as
ny nj n
e=>_0,0¢,xy), a=> ¢0O¢xy), p=> p¢xy), (64)
j=0 j=0 j=0

and choose the test function v(x,y) = ¢,(x,y) for I =0,1,...,n;, we get

: do; . : . :
102 m/jd—t‘] = /aK(hq)nx + hyny) ¢, ds — Z(mszj +myq;) + si, (65a)
J

J

Z/_m,jpj = /a hpn ¢, ds — Zm“}j.(pj, (65b)
: " -

Yy = [ et = i, s
0K j
where s, = [, S¢,dxdy and

0 0
my= [ gyardy, = [ Do drdy, mi = [ Lo, axa. (66)
K xk Ox k Oy
Now let us define the mass matrix M and the stiff matrices M*, M” as
M= (mij)a M = (mf])7 M = (mi/)v (67)

and the vectors

—
5): [(POa--.v(pnj]Ta ¢ = [¢07'-~a¢nJ}T7
—

?: @07~--7an]Ta q = [q07--~aqnj]T7 § = [SOa"'7an]T
In each K, we will get the following system of ODEs,

: d$ — X ) - X )

S 1(/(K(h(pnx+h{0ny)¢ds—M?—M’7+?>, (68)

— -1 - =

=M (/ hyn, ¢ ds — M q0>, (69)
0K

— —1 - —

7 =M (/ hqnyd)dS—My(p), (70)
0K

which will be solved by Runge-Kutta methods.
5. Numerical results
5.1. 1D numerical results

In the following numerical tests, the time derivatives in (48a) and (48b) are discretized with a fourth
order Runge-Kutta method and the time step Ar is chosen based on an empirical formula Af <
(Ax)*/((2J +1)*/ % Jmax) Where Ax is the element size and An. is the largest magnitude of the eigenvalues
of matrix S in (49). All error plots and Tables are given at the final simulation time ¢ = 8.

5.1.1. Linear homogeneous jump conditions
We consider the 1D Schrodinger Eq. (16) with the following exact discontinuous solution

eiElt(Al eikx ¥ JrBle—ikxlx), x € [_2’ _1)
@(x,1) = eP!(Ayefn + Bye*oY) x e (-1,1) (71)
eiE31<A3 eikx3x + B3 efik,%x)’ x € (17 2]
where E; = k; [c; for I =1,2,3.
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In the numerical test, ¢(x,7 = 7) is taken as the initial condition to yield a jump in the solution and exact
boundary condltlon atx = +£2 are used The parameters are chosen as k,, = k,, =k, =4, ci=c3=3, o =
3.1, 4, = Ay = el Ay =e®12) B, = B, = By = 0. In this case the jump conditions are given by (21) and
(22) with €] = €5 = 1.5 , € = 1.55 and w =1 for the ¢; in (17).

Figs. 4 and 5 are plots of the numerical solutions vs exact solutions at t = 8. Fig. 6 is the convergence plot
for J =0, 1, 2, 3 with N = 32. Fig. 7 is the log error plot for N = 8§, 16, 32 with J = 2. Meanwhile, Table 1 is the
L? errors for N =28, 16, 32 with J=1, 2, 3.

5.1.2. Linear inhomogeneous jump conditions
As an example of inhomogeneous interface condition, we add an inhomogeneous term in each of (14) and

(15), for k = 1,2,

e_iﬁquo(rk_a t) = e_iﬂkﬂtq)(rljv t) + Dok-15 (72)
g OP(T 1) i 09(T 1)
iyt k") a—iBryat ko
e o e o + G- (73)
then, (21) and (22) should be modified as
1 (k1% (e A 1, i 1M
Sty =3[ (55 = Do + (1= T )oleh,0) = au (4 7)), (74)

* numerical
—exact

—2 -1 0 1 2
X

Fig. 4. Real part for the case of linear homogeneous jump.

1
* numerical
—exact
0.5¢
=
=y 0
-0.5
-1 . .
-2 -1 0 1 2
X

Fig. 5. Imaginary part for the case of linear homogeneous jump.
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-1

Log10 of L2 error

0 0.5 1 1.5 2 2.5 3
order of basis function

Fig. 6. Exponential decay of the L? error with increasing order of basis for the case of 1D linear homogeneous jump.

log10 of Abs(error)

—2 -1 0 1 2
X

Fig. 7. The log error with decreasing mesh size for second order basis J =2 for the case of 1D linear homogeneous jump.

Table 1
L? errors with J =1, 2, 3 for the case of 1D linear homogeneous jump
J=1 J=2 J=3
N At L? Order At L’ Order At I? Order
8 4e—-3 9.0711e-2 - 4e—4 3.3388e—2 - 4e—5 1.2149¢-3 -
16 le-3 4.2692e—-2 1.0872 le—4 4.3116e—-3 2.9530 le—5 1.0722e—4 3.5022
32 2.5¢e—4 9.8135¢—3 2.1211 2.5e—5 5.0634e—4 3.0900 2.5e—6 7.5933e—6 3.8197
1 (k1 =) aqo(‘f l‘) (k—Ck+1 aqo(‘[ ) k kel
= [ ) 2000 | () gy B0l e ] 75
gk( ) 2 |: ax ax 9o ( )

For this case, the exact solution is

e (A €% 4 Bre®iT) + Ayx + By, xe€[-2,-1)
o(x, 1) = e (4 ear 4 Bye oY) 4 A 2X + §2a -L1) 76)
eiE3t(A3eikX3X + B; e s ")+Z3x+337 x € (1 2]

)

m

where the parameters are chosen as ky = ka =ky, = 4 a=0a=3 =314 =4=¢ i(E2—) 1Ay = ei<El—%‘>t,
B, =B,=B;=0, A1 = A3 — e iFt Az — e 1. 26‘_’ B, = B3 — e iFt Bz — e 4. le‘_t so that the jump
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conditions are given by (74) and (75) for ¢, = &; = 1.5, &, = 1.55% and w = 1 for the ¢ in (17) and ¢, = 0.1,
q, = —0.2, g3 =—-0.1, g, = 0.2. @(t = 7) is chosen as the initial condition.

Figs. 8 and 9 are plots of the numerical solutions vs exact solutions at ¢ = 8. Fig. 10 is the convergence plot
for J=0, 1, 2, 3 with N = 32. Fig. 11 is the log error plot for N =8, 16, 32 with J = 2. And Table 2 is the L?
errors for N=38, 16, 32 with J =1, 2, 3.

5.1.3. Nonlinear jump conditions

Next, we consider nonlinear jump conditions, we choose the parameters in (76) as &k, =
27 /]EXZ :i", ka\Z —2, Cl =03 = 3, C) = 31, A] = e%i(Eztik'Q), Az = ezi(Eltikx1>,A3 = e%i(EztikXZ), By =8B, = B3 =
0,41 =A,=A4;=0, B, = B, = By = 0, so that we will have the following nonlinear jump conditions

P (=17) = o(-1"), (a(P(a;l)) :ia(p(a_xl L o) = g2, iaq)é;): (aq)éi )> ’

and, correspondingly, we have in (21) and (22)

A1) =3 (0 (1) = pl=17) +5(0(=17) = oH(=1))
(1) :%(Q)%(lf) —o(17) +%(¢(1+) . (,02(1+))7
3

* numerical
—exact

05 * numerical
—exact
-1
-15 L s N
-2 -1 0 1 2

Fig. 9. Imaginary part for the case of linear inhomogeneous jump.
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Log10 of L2 error

0 0.5 1 15 2 25 3
order of basis function

Fig. 10. Exponential decay of the L? error with increasing order of basis for the case of 1D inhomogeneous jump.

' ——N=8
- N=16

log10 of Abs(error)

Fig. 11. The log error with decreasing mesh size for second order basis J =2 for the case of 1D inhomogeneous jump.

Table 2
L? errors with J = 1, 2, 3 for the case of 1D linear inhomogeneous jump
N At L? Order At L’ Order At ? Order
8 4e—3 1.8203e—1 - 4e—4 3.6616e—2 - 4e—5 1.4220e—-3
16 le—3 4.9122e—-2 1.8897 le—4 5.0381e—3 2.8615 le—5 1.2580e—4 3.4987
32 2.5¢—4 1.0682¢—3 2.2011 2.5e—5 5.9317e—4 3.0863 2.5e—6 8.8845¢—6 3.8236
-\ 2 - + N\ 2
¢ (t)_l _i(%e(=1) Op(=1)) , 1 (3e(=17) (;0¢(-1")
! 2 Ox Ox 2 Ox Ox ’
N\ 4 _ 2
() =2 001N _2e(17)) | 1 (3e(17) . (0p(1")
=111 — = i
£10=3 o o 2\ "o ox

¢(¢t = 7) is chosen as the initial condition. Figs. 12 and 13 are plots of the numerical solutions vs exact solu-
tions at ¢ = 8. Fig. 14 is the convergence plot for /=0, 1, 2, 3 with N = 32. Fig. 15 is the log error plot for
N =38, 16, 32 with J=2. And Table 3 is the L? errors for N =38, 16, 32 with J=1, 2, 3.
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1
0.5f
=
5 0
-0.5
* numerical
—exact
—1 . = L
-2 -1 0 1 2

X

Fig. 12. Real part for the case of nonlinear jump.

1

0.5

* numerical
—exact
=
5 0
-0.5
- —1 0 1 2

X

Fig. 13. Imaginary part for the case of nonlinear jump.

Log10 of L2 error

0 0.5 1 15 2 2.5 3
order of basis function

Fig. 14. Exponential decay of the L? error with increasing order of basis for the case of 1D nonlinear jump.
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0 .
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Fig. 15. The log error with decreasing mesh size for second order basis J = 2 for the case of 1D nonlinear jump.

Table 3
L? errors with J =1, 2, 3 for the case of 1D nonlinear jump

J=1 J=2 J=3
N At L’ Order At L’ Order At L’ Order
8 4e—-3 1.6756e—1 - 4e—4 2.3174e-2 - 4e—5 8.6352¢—4 -
16 le-3 3.5579e—2 2.2356 le—4 3.0480e—3 2.9266 le—5 7.5649¢—5 3.5128
32 2.5¢—4 6.8577e—3 2.3752 2.5e—5 3.5683e—4 3.0945 2.5e—6 5.3475e—6 3.8223

5.2. 2D numerical result

Assuming that the time dependent factor is e, the exact solution to a 2D scalar Schrddinger equation

. aq)_ )
1c at - v QD(X,)’J)

Fig. 16. 2D mesh.
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given as
eiElt(Al eikx|x+ikyly +Bl e—ikxlx—ikyly), X € Ql
PO = kit ik x—ik
ef2 (A e ™t  Bye M ) x € Q)
where E; = (ki_ +k§i)/ci fori=1,2, and
O ={(x )+ <1}, L ={(xy1 <+ <2} (78)

The parameters are chosen as k,, =k, =k, =2, k,, =3, ¢, =3, =31, 4, =4,=1, B, =8,=0 and
jump given at interface (x*> +y* = 1) are

(77)

F(x,p, 1) = eif2! gibartikny _ gifitgik ik
X )= elEzt lkx x+ ik e‘kxzx“kyzy — eLE" lkx X+ ik elkx1x+iky1y.
7y7 23 yz : yl

Fig. 16 is the mesh used in the computation. Starting from ¢ = 0, solution is computed up to =1 with a
time step Az = le — 6. Figs. 17 and 18 are real and imaginary part of the numerical results using a 3-rd
order basis, respectively while Fig. 19 is the error plot. The exponential convergence is shown in Fig. 20.

Real Part

Fig. 17. Real part with third order basis for 2D case.

Imaginary Part

Fig. 18. Imaginary part with third order basis for 2D case.
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Relative Error

V10

0.024
E 0.022
0.02
— 0.018
0.016
0.014
0.012
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0.008
0.006
0.004
0.002

Fig. 19. Error plot with third order basis for 2D case.

Log10 of L2 error

0 1 2 3 4
order of basis function

Fig. 20. Exponential decay of the L* error at = 1 with increasing order of basis for 2D case.

6. Conclusion

In this paper, we proposed a new type of generalized discontinuous Galerkin (GDG) method based on dis-
tributional formulations of Schrédinger equations with nonsmooth solutions. The unique feature of the GDG
method is its ability to handle general time dependent and nonlinear jump conditions. Numerical results of the
GDG method have demonstrated its flexibility and high order accuracy. Meanwhile, the proposed GDG

methodology can be extended to other type of partial differential equations with discontinuous solutions,
which will be addressed in future work.
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Appendix 1. Split distribution and its integration by parts formula
A.1. 1D case

We will define an evenly split J(x) so for any function v defined in R, and a > 0, we have

o
1
/ (0)3(x)dx = 20(0), (A1)
¢ 1
/ o(0)5(x)dx = 30(0). (A2)
0+
To justify the above, let us first define a series of functions
1 —
he(x)={"” a€<x<ﬁe, (A3)
0, else

where 0 < o, f < 1,a+ f = 1. In the following, we take o = =1 for an evenly-split d(x)-function. As we
know,

lim 4. (x) = 6(x), (A.4)

e—0

we define the evenly split d(x) by the following limiting procedure,

/_ 0 ()9 (x)dx = lim _Z o(x)h (x)dx = lim é _(: (x)dx — lim © (U(x*) f) ET [75,0}

which is (A.1). Similarly, one can show that (A.2) can be defined.

For any piecewise continuous function ¢(x) with a jump at x = 0, we intend to find the integration by parts
formula for a similarly defined split distribution %‘(’, in the manner of (A.1) and (A.2).

Let ¢(x) have the following decomposition

o(x) = {0} + [plH(x) + ¢ (x), (A.5)

where {¢} =1 (0(07) + @(07)), [@] = ¢(07) — (07), ¢, (x) is assumed to be continuous and ¢, (0) = 0, H (x)
is the Heavside function

L x>0
H(x) =<7, . (A.6)
7 x<0
Define H,.(x) as an approximation to H (x),
3o x>
H,(x) = q %, F<x <54, (A7)
-1 x< -3

and ¢ (x) as an approximation to ¢(x),

@, (x) = {0} + [0]|H:(x) + ¢, (x). (A8)
For v(x) € C*[a,0],a < 0, we define the following split distribution by a limiting procedure

/ao aa—fv(x)dx = 123% /{10 %v(x)dx.
To derive an integration by parts formulation for the above integral, we can decompose v(x) as

v(x) = v1(x) + v2(x) (A9)
where v (x) 4 v2(x) € C*[a,0], and supp(v;) C [2¢,0],supp(v2) C [a, 4, thus

v(0) = v1(0), v(a) = va(a). (A.10)
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First consider

" 99, * oH, " g,
/a o vy (x)dx = [qo]/u - vl(x)dx—l—/a Evl(x)dx

~lol | aaH () + 01 (0)01(0) — gy (@)or(a) — [ g, ()

a

o }/a e vy (e - /%’“q)l —[(p]/:%vl(x)dx—/ao%(pl(x)dx

here ¢,(0) = 0,v,(a) = 0 have been used in the third equality.
As € — 0, using (A.10), we have

[ % wac =100 - [ L ouwar=1610) - [ L ot) ~ (o) - olHcoar

a

— 1010 - [ Topwar (A1)

Next, we consider

[ Setnte= [ et = [*Grtote= o GJe(5) —oteta - [ G otoa

a

6U2

a(ﬂ(x)dx,

= —o(a)o(a) -
here v,(§) = 0,v2(a) = v(a) have been used in the last equality.
Passing the limit ¢ — 0, we get,

09 %9
[ G =—pl@la) ~ [ @ (A.12)
Now adding (A.11) and (A.12), we have
" ¢ 0 dv
7 (Wdr = {0}0(0) — p(a)v(a) — | = @(x)dr. (A.13)

a a

Similarly, we can prove that, for v(x) € C*[0, b],

| &retdr = o(e1olb) ~ {o}e(0) - [ oo (A14
0 0

Combining (A.13) and (A.14), we have

[ a5 = o)) ~ ot - [ Zotoar

which implies for v(x) € Cy(—o00, ),
> 0 < v
" av(x)dx—— 0054’

defining the full Dirac 6(x) if @(x) = H(x).

(x)dx,

Remark 5. In the definition of split distribution and integration by parts formula, we have selected « = f§ = %,

in principle, we could also define a general (a, §)-split distribution and its related integration by parts formula.
Due to the symmetry of the Laplace operator involved in the Schrodinger equation, the evenly-split
distribution is selected here.
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A.2. 2D case

On the interface I', a local coordinate (&, ) will be introduced where ¢ is along the normal direction of the
interface and 5 is along the tangential direction(s). If I' is given by the constant line ¢ = &*, we have

1 @
x,y)0(& — E)dxdy = = ——ds, A.15

ot —iasay =3 [ L (A15)
and if ¢(x,y) is discontinuous across I', we have the integration by parts formula as

/ v(x,y)dxdy = / Qun,ds — / ¢(x,y)dxdy, (A.16)

oK
/ P (x, y)dxd / Gun, ds /a” (x, y)dxd (A.17)
v(x n,ds — —o(x, , .

x Oy i . oK ooy K ay(ﬂ g g

where

3 y)—{(”’ if (x,y) ¢TI
’ {o}, if (xy) eI’
and {¢} is the average of the values of ¢ on both sides of I'.

To show (A.15), we first transform the triangle element K into K in (,n) coordinates as in Fig. 21, where
sides of the K are described by &,(17), & (1), n € [,,1m,) and K NI is given by ¢ = & () = &, e [711,'72}

Then, we have
[Lotnae-erar= [oemae-erferazan= [1 dn/f et - ) 55D ac

R NG E )
_2/'17 (<" m)7 BE|._e

here, in second quality we can restrict our integration limit to [n7, ,] instead of the full range of [1,, 1,] due to
the fact that §(¢ — &) =0 for & < &°. Also, the 1D split distribution formula (A.2) has been used.
Along I' = {(x,y) = (x(¢",n),»(&",n))}, the arc length is given by

ds = /x} + yrdn,

meanwhile, it is easy to check that

o(x, y) y o(x, )
og,n) " o(&,n)’

dn,

= ¢,

Xy = _éx

then,

. Lo 0,y ! 4
5(¢ — &)drdy =~ —edn=5 | g ds
[ ot - ¢ )asay 2/}ﬁ O(& 1) e lener 0 2/ ve ©

n r
Y y 5
r ] /,<|
E . iﬂn)V_‘—w &,(n)
—_— L |
My i
S X gl” - &

Fig. 21. Coordinate transformation on I'.
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Next, to show (A.16), we consider the three sides I'\,I,=KNI,I'; of a triangle K given by
{10,y € bioyal}s Ax2(0),y € b’nyz]} {x3(»), € [y1, 1]}, as depicted in Fig. 22. Then,

X (v x3(y)
/—vdxdy / dy/ vdx+/ dy/
ox . x
N V2 V2 20
— / dy{e}ol () + / dyev|,_,) — / dyoul,_, ) — / dy / 5, 24
1 » » 7 x@) OX

1
x3()
/ d)’/ Q’dx—ll-f—]z-l-]% /6 pdxdy,
XILV

here the 1D integration by parts formula (A.14) is used in the second equality.
On the side I';, = K N T of triangle K, the arc-length is given by

ds=/1+ <de) dy,
dy

and its normal direction is given by

1 dx,
(l’lx,l’l ) =T <17__>7
v i dy

1+(d—y)2

therefore,

Iy

I = /{w}le o= /{w}v )dS— {p}vn.ds.

Similarly, we can show that
I, = / ouvn.ds, I3 = / oon,ds,
I3 I
therefore we have
[1+12+[3:/ @vnxds,
oK

which proves (A.16). (A.17) can be similarly proven.
Ya

s ¥

Fig. 22. Element K.
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Appendix 2. Justification of /-terms of (60a)—(60c)

We expand the function ¢(x,y,t) as

(p(x,y, t) ~ H(é - 6*)f(x7y7 t) +Hl(5 - é*)g(-)ﬂy, t)a (Alg)

where H(¢ — &) is the 1D Heavside function in (A.6), whose derivative along ¢-direction is §(¢& — &), and
H\ (¢ — &) is a function whose derivative along &-direction is H(¢ — &), Functions f(x, y, 1), g(x, v, t) will be
extended away to a small neighborhood from the interface I' by constant extension along the normal direc-
tion. It is noted that the remainder of the expansion in (A.18) will be a continuous function across I" with con-
tinuous normal derivative.

Then, we have

0p OH(E-¢) @f OH (¢ — f) 0
E—Tf‘FH(f 5) t—p g5
_ gk £ gk ¢ g 67g
=& =& g S HHE- L 8) + Hi(E =<7, (A.19)
where L:(f, g) is defined as
V oF ¢
Li(f,g) T T ad (A.20)

and we have

o? 0 0 &
o= (0 - ) Fr) +oe - O FL + HE - O (L9 ) + - )5S
(A21)
Similarly by defining
of @
Li(f.g )—l+aég, (A.22)
we have
6(/)_ L. 0& . « 0g
@—5(6—6)@HH(C—&)Lﬁ(f,g)+H1(£—6)@, (A.23)
2 2
27(5 a((é &) €f>+5(f é) L*(fg)+H(£ &L <§(fg) >+H1(¢3 5)%‘)’
(A.24)

Notice that those terms containing 6(£ — ¢*) are singularities resulting from the jump conditions. Therefore, to
write a PDE which is valid also at interface I", we must include appropriate o-functions to compensate for the
jumps as follows.

First, by introducing p and ¢ as in (60b) and (60c), (A.19) and (A.23) becomes

= H(E - SV 0) +HI(E— &), (A25)

§=H(E = )+ (E - ) (A26)

where no singularity remains. Now, since

1 ag of 08 Of B¢ oe\?  [aE\?
LU+t - (L e+ ay>+g<(ax) +(ay>> Vel L+ veps,
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and, as we take constant extension of f along normal direction 7 = ﬁ(%’gf) ie. a/ =0, from (A.21) and
(A.24), we have )

Zrgloae- o (FLve S L)

oy 9
_0p  Oq e 7¢ %
_a+__55 ENVELe=H(E - €)<L§<Lx(f7g)7ax)
ef e og azg g
+L; <L;(f’g)’6_y>> +H1(a 2752 ) (A-27)

i.e. (60a) also has no singularity left.
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